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GEOMETRIC »r^URENim KQUATIONS 

by 

So] onion Lefnohetz'x 

My present topic refers to a scarcely recognized part of the 

vast topic of d.e. (=-- differential equations). The very title how¬ 

ever ^ presents an anomaly, V/hile "d.e." is a clearly iuarlH.ed part of 

analysis, "geometry" offers considerable vagueness. However, while 

no question pertaining to d.e. can avoid a strong utilization of 

analysis, the "geometrical bent" will not always be as apparent. 

Leaving aside the appropriateness of the title, my purpose is 

to present, however briefly, the profound contributions of a few out 

standing authors, the first being Poincare, the true founder of my 

topic. 

Henri. Poincare. This work of foundation, dating almost a 

century, was accomplished by Poincare in his great classic, Sur les 

courbes definies par une équation differentielle (Oervres, Vol. 2). 

for the first time the totality of the system of trajectories of a 

d.e. vas studied. The particular’ first system selected was planar! 

(1) X = f(x,y), y = g(x,y) 

where f and g are real polynomials. Poincare pointed out the 
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importance oí' critical points v,itere both f and g vanish and 

realized correctly enough, that as a first step he should avoid all 

highly special cases. Therefore, ho limited the study to the ele¬ 

mentary type. At such a point A; taken as the origin, (l) assumes 

the form 

(2 ) X = ax 1 by -h •. , ÿ = cx + dy + • • • 

(... terms of higher degree). Here a, b, c, d are real constants 

with 5 = ad - be / 0 and characteristic roots defined by 

= r" - (a+d)r +0 = 0. 

Everything revolves around the values of the roots \,|i. The 

characterization is this! 

\,|.i real! node) both negative, stable) both positive, unstable. 

X,p real, and of opposite signs! saddle point. 

X, p complex, \ = V + i\", p = - i\", X' f 0! 

focus X' < 0, stable X' > 0, unstable. 

X' = 0! center. 

The center turns out to be the most troublesome. Basically, it be¬ 

gins with a succession of ovals and then turns into the preceding 

a-r b 

c d-r 
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type, but no method has yet been'found to say vdvcii this occurs. 

Index. Let V be a vector system valid in the whole plane, 

for instance (f,g). Let A be an isolated critical point. In a 

small neighborhood of A the vector of V is only zero at A. Let 

y be a small positive circle centered at A, and such that V -/ 0 

on y. Let P be a point of 7, V(P) its vector, B its positive 

angle with some fixed direction. As P describes 7 once, 

Var 0 -- ia-2'ír and m = Jnd A. Its basic properties are,' 

(a) Ind A is independent of 7 (if small enough). 

(fc) Ind A may also be defined topologieal.ly as follows. 

Take a large PDA. Let V(P) cut P in P’ . Then P P' de¬ 

fines a map 7 -» P under which P is covered algebraically m 

times and m - Ind A. 

(Via a classic theorem of L. E. J. Brouwer, this offers the 

natural extension of the index to higher dimensions.) 

(c) When the Jordan curve J surrounds c.ps. (•- critical 

points) A^, 1 < h < n, then 

Ind J = L Ind A, . 
n 

(NoteI Ind J defined like Ind A.) Hence, if J surrounds no c.p. 

Ind A - 0. 

(d) Indices of elementary c.p. of V(f,g) of (1) is 4-1, 

except for a saddle point when it is -1. 
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general conditions). 

D. Treatment of solutions of d.e. on a projective plane. 

Application to the behavior of polynomial systems at <». 

E. On a smooth orientable surface ¢) one may define d.e. 

and related V with its indices. Then Z Ind Ah = X($) = Euler- 

Poincaré characteristic. 

F. Extension to ^-dimensions (somewhat incomplete). 

G. Method of sections. This method was later extensively 

exploited by Birkhoff. Let 7 be a closed analytic trajectory of a 

d.e. system in 5-space. At some point P of 7 let $ be a portion 

of an analytic surface not tangent to 7 at P, Then the trajectories 

ó of the system very near 7 intersect $ in a first point Q very 

near P. Let be the second intersection of Ô with $ very 

near P. lire nature of the transformation TI Qmay and often 

does serve to tell a great deal about the neighborhood of 7. In 

particular, the fixed points of T, likewise those of the recurrent 

12 
T ,T ,..., disclose the presence of new periodic trajectories of the 

system near 7. This is the famous method of sections. 

H. Bifurcation theory for space analytic system which 

about a point split into several distinct systems (important in 

applications). 

I. Poincare's books on celestial mechanics (far ahead of 

their time) are replete with new theories and applications of d.e. 

J. The Poincare-Birkhoff theorem. Cosmology led Poincare 

to surmise the following proposition! In the plane R, let Z be the 
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annular ring bounded by two circumferences and Cn} interior 

to C2. Sujjpose that has a topological area preserving trans¬ 

formation T (all important in dynamics) under which and 

rotate in opposite directions. Then T has generally two fixed 

points in E (the two may coincide). 

A year or so before his death (aged 57), Poincare published a 

long memoire describing his unfruitful endeavors to prove the full 

theorem, in the hope that a younger man might have more luck. The 

younger man G. D. Birkhoff published a remarkably short and ingenious 

proof of the theorem, about a year after Poincare's death... . 

General observation. It was characteristic of Poincare that 

he constantly illustrated his results by concrete examples. In 

particular, he showed how his general 2-diraension theory could serve 

to provide a complete description of the full system of trajectories 

for comparatively simple systems, and in applications of various 

kinds his results turned out to be utterly useful. 

G. D. Birkhoff (1884-1944). His work in our subject and re¬ 

lated questions may be fairly described as a continuation of 

* 

Poincare's. However, in it the different directions pursued, an¬ 

alytical and geometric, are so mixed that the work of extricating 

the part belonging properly to my present topic is too difficult for 

me to separate. I shall, therefore, refer to the very competent 

article written by Marston Morse on Birkhoffs complete research 

(see beginning of Vol. I. of Birkhoff's complete works). I shall 
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limit my discourse to the proof of the Poincare-Birkhoff theorem, its 

extension, an application and a few striking contributions on details 

made by Birkhoff. 

A. Proof of the Poincare-Birkhoff theorem. Birkhoff 

utilised in a fundamental way the property of invariance of area. If 

T is the initial transformation he introduced a new transformation 

T£: a radial e shrinking of the ring (e small) towards the center. 

This enabled him to define an invariant arc \ of T T. Then con- 
e 

sidering the powers of T£T and variation along X of a vector 

joining a point to its predecessor, followed by a return along -\} 

he showed that no fixed point implied a contradiction, from which 

the theorem follows. 

B. Application to the billiard ball problem. The ball 

is assumed to roll on a plane table bounded by a convex curve. As 

it hits the boundary, the ball is reflected through an angle of 

"reflection" equal to the angle of incidence. Birkhoff shows 

(complete works, II, p. 333) that upon looking to the closed polygon 

paths one succeeds in proving that the associated dynamical systems 

has an infinity of periodic motions, some stable, others unstable. 

In the course of the discussion Birkhoff introduced the highly 

interesting notion of minimax (intermediary between a maximum and a 

minimum). 

Regarding the collection of periodic motions (discovered 

through the Poincare surface of sections scheme) see also the very 



interesting and extensive paper of Birkhofi?; Complete works, II, 

p. 111. 

C. Extension of the Polncare-R:irkhoff theorem. Let r,0 

be plane polar coordinates and let C be the circle r - a > 0. Let 

R be a ring bounded by C and a curve P D C. Let R.,P-j be a 

second similar system and let T .be a topological map R -> . 

Theorem. If P and P^ are met only once by any line 

0 = const., and T carries points of P and P^ in opposite di¬ 

rections then either (a) there are two distinct invariant points of 

R and R^ under T or else (b) there is an annulus Rg of R or 

R^ (abutting on C) carried into part of itself by T (or T-^). 

D. Extension of the method of sections for dimension two. 

While Poincare limited the method to a small open neighborhood Cl of 

a periodic solution Birkhoff extended the method to fps with boundary. 

This consisted of several disjoint periodic solutions of the basic 

system, or for that matter of the extension of the method to a surface 

of any genus. 

E. This refers to a very interesting extension of the ro¬ 

tation character of a curve P in this direction^- Let P be on an 

orientable surface 0 and thus let it have two distinct sides P^ 

and Pg. Then Birkhoff showed that each of these two sides could 

have distinct rotation constants. 
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A. M. Liapunov, His name is indelibly attached to the concept 

of stability. His classical memoire, mainly known outside Russia by 

later French translation,' Problème général de la stabilité du movement 

(Russian edition I892, French translation, Annales de Toulouse, re¬ 

produced as Annals of Mathematics Studies) treats stability in a 

completely fundamental way. Much on the concept was known - and taken 

for granted before Liapunov but he not only organised the subject but 

also made many profound and new contributions to it. Evidently 
» 

Lagrange, Poincare and a number of others could not and did not dis¬ 

pense with a knowledge of stability. For instance while the motion 

of the planets is "apparently" stable - in some practical sense say 

4 
10 years - how long did it last? (Who knows?). Besides, for example, 

the p-bodies problem evoked seemingly different stability... . 

Well at any rate since Liapunov the answer is unique. We re¬ 

call a couple of the basic statements. 

Let £ be a dynamical system in n-space x = (x^,.. .x^) and 

suppose that x = 0 is a solution. Then 

0 is stable whenever given any open set U D 0 and time t^, , 

there exists another V(U,t^) C U such that if a motion starts in 

V at time t^ it will remain in U for all t > t^ (uniformly 

stable when V depends only on U) unstable whenever given U,tç 

as before, and whatever V C U, the motion at some T > t^ reaches 

the boundary of U. 

Asymptotically stable wherever with the same data the motion -» 0. 

Conditional stability wherever stability holds only for some 

subset W C U. 



There are obvious applications to elementary critical points. 

The center is the only stable one not a • s. 

Note that Liapunov (a la I892) limited his study to analytical 

systems, holomorphic at the origin - an unimportant restriction. 

Hope : Would someone take his memoire and shorten it appreciably, 

via suitable vector notations'. 

Major result. It is in a sense a generalization of the Lagrange 

stability theorem by extremal values of the potential. Hovrever, 

Liapunov's result does not require knowledge of the solutions. I will 

not state the actual theorem but rather a geometric interpretation for 

dimension two. Let W(x^,Xg) be positive definite in a region fi(0), 

2 2 2 
that is within a cylinder x^ + Xg = r . Let y be a third coordinate. 

The surface Fl y = W is a cup over fl. The curves W = const, are 

the projections of the horizontal sections of F. The paths F in 

» 

fí(0) are imaged into paths A on F. The projection F -*fi(0) is 

topological. 

Stability I W < 0 implies that on F the path stays on the 

lower part of the cup, goes down sluggishly and need not reach 0. 

A • st. W < -a < 0. The path tends rapidly to the origin. 

Instability. ' Along some A‘. W > ß > 0 - the path goes away 

from 0 and reaches the boundary of fi(0). 

The extension is easy. 
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For rapid applications see ray book! D.E. Geometric Theory; 2nd 

edition^ p. II7. 

Andronov and Pontryagin. These two authors have introduced in 

the late thirties a very novel and interesting concept! Structural 

Stability. Their announcing note in the Doklady gave no proofs. 

These were first provided by De Baggis and later considerably improved 

and expanded by Peixoto. 

Briefly the idea is this. Given say an open bounded plane 2-cell 

region fi with boundary B, which for a given d.e. has a finite set 

of elementary critical points and séparatrices (lines emanating from 

saddle points). Suppose that (in some sense) the system undergoes an 

e-deformation. Under what conditions does the phase - portrait of the 

system remain unchanged. This is known as structural stability. 

General conditions are! the system has only a finite number of ele¬ 

mentary critical points, none a center* it has at most a finite number 

a» 

of closed paths in iiJ all limit - cycles, always stable r r unstable 

on both sides; no separatrix joins two distinct saddle points. These 

are also sufficient conditions and (proved by Peixoto) they are also, 

independent of e. 

It is understood throughout that B is analytical' and crossed, 

not tangentially in the same direction by the solutions of the d.e. 
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table 

unstable; arrows 

reversed 
i 

saddle point 

trajectory I stable 
I unstable, 

all the rest unstable 

i 

■ ■ I 
stable focus j 

unstable; arrows ¡ 

reversed 

center stable 

unstable; arrows 
reversed 

/ 



:r.1SI0N OP APPLIED MATHEMATICS 

LP.CVr.I UNIVERSITY 
PROVIDENCE, RHODE ISLAND 02? 12 

- • h i 11 r >. t: 

GEOMETRIC DIFFERENTIAL EQUATIONS 

: ' • 7.,¡- . C -,:-5¾ (Ty lie 1-. t n-r ■. ,..- . ir.ifusivt- :lo<e»J 

Scientific Interim 

-C^ i* F¡r r r.um»', midJlv tnnt<i!. !ait r.ú.’r^i 

UNCLASSIFIED 
2b. C, noisy 

SOLOMON LEFSCHETZ 

June 1971 ____ 

, so AF-AEOSR 693-67" 

:-.. P”'jj£í:t 9749 

61102F 

. 68I34 _ 
r , ! a; T .C-. ST A r EMFN T 

! Approved for public release; 
1 distribution unlimited. 

«* F-1 r.*.* L S ^ £ it V NOTES 

TECH, OTHER 

? d TCr*L. NO. o r PAGtS 

11 
"j.I. OR'filN ATOM’S MEMOMT 'Mu(S(»E»5|S) 

¡7C. MO. OP REFS 

1 0 

jf.' o T O i .1 (/4n>* ofht’f numbers that muy fiausbifinott 

this report/ " “ 
ÄE0SSTR-71-206 5 

y 

I ). SPONSORING MILI T ARV ACTi-lTY _ • . 

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (NMj 

1400 WILSON BOULEVARD 

ARLINGTON, VIRGINIA 
t * 

My nresent topic refers to a scarcely recognized part of the vast topic of 

i differential equations. The very title, however, presents an anomaly. While differ¬ 

ential equations is a clearly marked part of analysis, geometry offers considerable 

I vagueness. However, while no question pertaining to differential equations can avoid 
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